
Mathematics 272 Lecture 4 Notes

Professor: Dan Král
Scribe: Daniel Raban

January 30, 2025

1 Determining Permutons From 4-Point Permutation Den-
sities

1.1 5-point permutation densities determine the uniform distribution

Last time, we wanted to prove the following theorem.

Theorem 1.1. If (πn)n∈N is a sequence of permutations |πn| → ∞ and limn→∞ d(σ, πm) =
1
24 for all σ ∈ S4, then (πn)n∈N and for every permutation σ, limn→∞ d(σ, πn) =

1
|σ|! .

We will first prove a weaker statement.

Theorem 1.2 (Hoeffding, 1948). If µ is a permuton and d(σ, µ) = 1
120 for all σ ∈ S5, then

µ is the uniform measure.

Note that this implies that the density of any 3-point permutation in µ is 1/6, and the
density of any 4-point permutation in µ is 1/24.

We considered the joint CDF F (x, y) = µ([0, x] × [0, y]), and we looked at how to
calculate the integral

∫
F (x, y) dλ, where λ is the uniform distribution on [0, 1]2. We

showed that ∫
F (x, y) dλ =

∑
σ∈S3

ασd(σ, µ)

for some values ασ depending only on σ and not on µ.

Proof. Because F is a continuous function (as µ has uniform marginals), it is enough just
to look at the integral∫

(F (x, y)− xy)2 dλ =

∫
F (x, y)2 dλ− 2F (x, y)xy dλ+

∫
x2y2 dλ.

If we sample (X0, Y0) ∼ λ, (X1, Y1) ∼ µ, and (X2, Y2) ∼ µ, then∫
F (x, y)2 dλ = P(X1 ≤ X0, X2 ≤ X0, Y1 ≤ Y0, Y2 ≤ Y0).

1



If we instead sample (X0, Y
′
0) ∼ µ and (X ′

0, Y0) ∼ µ, then this can be expressed in the
exact same way:

= P(X1 ≤ X0, X2 ≤ X0, Y1 ≤ Y0, Y2 ≤ Y0)

Now we just have 4 points according to µ, and we want to look at their relative positions
in the square [0, 1]2.

=
∑
σ∈S4

ασd(σ, µ)

For example, α
1 2 3 4

= 4
24 .

Similarly, ∫
F (x, y)xy dλ = P(X1 ≤ X0, Y1 ≤ Y0, X2 ≤ X0, Y3 ≤ Y0),

where (X0, Y0) ∼ λ, (X1, Y1) ∼ µ, (X2, Y2) ∼ λ, and (X3, Y3) ∼ λ. We can actually take
(X2, Y2) ∼ µ, (X3, Y3) ∼ µ because µ has uniform marginals. And, by instead sampling
(X0, Y

′
0) ∼ µ and (X ′

0, Y0) ∼ µ, we can get

=
∑
σ∈S5

ασd(σ, µ)

for some coefficients ασ.
The third term is a constant, independent of µ. We see that the right hand side is a

value which doesn’t depend on µ (as long as µ has the same permutation densities as λ),
and since the left hand side equals 0 when µ is the uniform distribution, this must equal 0
in general. So µ = λ, as claimed.

1.2 4-point permutation densities determine the uniform distribution

We would now like to prove a version of the theorem with 4-point permutations, rather
than 5-point permutations.

Theorem 1.3. If µ is a permuton and d(σ, µ) = 1
24 for all σ ∈ S4, then µ is the uniform

measure.

Proof. A similar argument from before tells us that(∫
F (x, y)xy dµ

)2

=
∑
σ∈S4

ασd(σ, µ)

for some constants ασ. So this is the same as if we had µ = λ, which gives us the value

=
1

81
.
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On the other hand, using Cauchy-Schwarz,(∫
F (x, y)xy dµ

)2

≤
(∫

F (x, y)2 dµ

)(∫
x2y2 dµ

)
The first term can be expressed as

∑
σ∈S3

α′
σd(σ, µ) for some constants α′

σ, so it equals the
same value as if µ = λ. In particular, we get

=
1

9

∫
x2y2 dµ.

The second term is the hard part, since it still requires us to sample 5 points from µ.
It will be helpful for us to understand

∫
F (x, y)xy dλ.We can rearrange this by writing

it as two integrals and swapping the order.∫
F (x, y)xy dλ =

∫
1{x′≤x,y′≤y}xy dµ(x

′, y′) dλ(x, y)

=

∫∫
1{x′≤x,y′≤y}xy dλ(x, y) dµ(x

′, y′)

=

∫
1

2
(1− (x′)2)

1

2
(1− (y′)2) dµ

=
1

4

∫
1− x2 − y2 + x2y2 dµ(x, y)

. Substituting this into the inequality we had before, we get

1

81
=

1

9

∫
x2y2 dµ

≤ 1

9

(
4

∫
F (x, y)xy dλ−

∫
1− x2 − y2 dµ

)
=

1

9

(
4

∫
F (x, y)xy dλ− 1

3

)
Using Cauchy-Schwarz again,

≤ 4

9

√∫
F (x, y)2 dλ

√∫
x2y2 dλ− 1

27

=
4

9 · 3 · 3
− 1

27

=
1

81
.

Therefore, all the inequalities are actually equalities, and we get F (x, y) = c · xy almost
everywhere for some constant c. So we get that µ = λ, as desired.
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1.3 Proving convergence of permutations from convergence of 4-point
permutation densities

To finish the proof of Theorem 1.1, we need to show that (πn) is convergent.

Proof. Suppose (πn)n∈N is such that |πn| → ∞ and limn→∞ d(σ, πn) = 1
24 . If (πn)n∈N is

not convergent, then there exist two subsequences (ni)i∈N, (n
′
i)i∈N and a permutation σ

such that limi→∞ d(σ, πni) ̸= limi→∞ d(σ, πn′
i
). Without loss of generality, we may assume

that (πni)i∈N are convergent (by compactness) with limits µ, µ′. However, our theorem
says that both µ, µ′ are the uniform measure, which implies that d(σ, µ) = d(σ, µ′).

Example 1.1. Here is an example that shows that we cannot prove the same theorem
with S3 in place of S4. Define

µ1 = µ2 =

Then define µα = αµ1 + (1− α)µ2, interpolating between µ1, µ2.

Then d( 1 2 3 , µα) is a continuous function in α, so there exists some α which gives
us d( 1 2 3 , µα) = 1/6. By symmetry, d( 3 2 1 , µα) = 1/6. On the other hand, by
symmetry, we have

d( 1 3 2 , µα) = d( 2 1 3 , µα) = d( 2 3 1 , µα) = d( 3 1 2 , µα),
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so these all must equal 1
4(1− 21

6) =
1
6 .

Here are two theorems that a computer can prove using the flag algebra method we
will see later.

Theorem 1.4. If µ is a permuton such that d( 1 2 3 , µ) = d( 3 2 1 , µ) = 1
6 and

d( 2 1 4 3 , µ) = d( 3 4 1 2 , µ) = d( 2 4 1 3 , µ) = d( 3 1 4 2 , µ) = 1
24 ,

then µ is the uniform measure.

Theorem 1.5. If µ is a permuton such that

d( 1 2 3 4 , µ) + d( 2 1 3 4 , µ) + d( 2 1 4 3 , µ) + d( 1 2 4 3 , µ)

+ d( 4 3 2 1 , µ) + d( 4 3 1 2 , µ) + d( 3 4 1 2 , µ) + d( 3 4 2 1 , µ) =
1

3
,

then µ is uniform.
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