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1 Determining Permutons From 4-Point Permutation Den-
sities

1.1 5-point permutation densities determine the uniform distribution

Last time, we wanted to prove the following theorem.

Theorem 1.1. If (7, )nen s a sequence of permutations |m,| — oo and limy,_,~ d(o, T,) =
1

i for all o € Sy, then (my)nen and for every permutation o, lim, o d(o, 7)) = o

We will first prove a weaker statement.

Theorem 1.2 (Hoeffding, 1948). If i is a permuton and d(o, u) = ﬁ for all o € S5, then
1 1s the uniform measure.

Note that this implies that the density of any 3-point permutation in x is 1/6, and the
density of any 4-point permutation in p is 1/24.

We considered the joint CDF F(z,y) = p([0,z] x [0,y]), and we looked at how to
calculate the integral [ F(z,y)d\, where A is the uniform distribution on [0,1]2. We
showed that

/F(:p,y) d\ = Z aqd(o, 1)

oES3

for some values a, depending only on ¢ and not on pu.

Proof. Because F' is a continuous function (as p has uniform marginals), it is enough just
to look at the integral

/(F(w, y) — zy)?d\ = /F(:L', y)2d\ — 2F (x, y)zy d\ + /x2y2 d.
If we sample (Xo, Yo) ~ A, (X1,Y1) ~ p, and (X2, Y2) ~ u, then

/F(w,y>2dA _P(X1 < Xo, X < Xo, Vi < Yo, Y < Vo).
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If we instead sample (Xo,Y]) ~ p and (X(,Yy) ~ p, then this can be expressed in the
exact same way:

=P(X1 < Xo, X2 < X, Y1 < Y0, Y2 <Yp)
Now we just have 4 points according to p, and we want to look at their relative positions

in the square [0, 1]2.
= Z agd(o, 1)
0€Sy

4

For example, « 1 2 3 4 =2

Similarly,

/F(l’,y)ﬂ')yd)\ = ]P)(Xl < X())Yl < }/O>X2 < X01Y73 < }/0)7

where (Xo,Yy) ~ A, (X1,Y7) ~ p, (X2,Y2) ~ A, and (X3,Y3) ~ A\. We can actually take
(X2,Y2) ~ u, (X3,Y3) ~ u because p has uniform marginals. And, by instead sampling
(Xo,Yy) ~ pand (X, Yo) ~ p, we can get

= Z ayd(o, 1)

og€ESs

for some coefficients a,.

The third term is a constant, independent of . We see that the right hand side is a
value which doesn’t depend on u (as long as p has the same permutation densities as \),
and since the left hand side equals 0 when g is the uniform distribution, this must equal 0
in general. So p = A, as claimed. O

1.2 4-point permutation densities determine the uniform distribution

We would now like to prove a version of the theorem with 4-point permutations, rather
than 5-point permutations.

Theorem 1.3. If p is a permuton and d(o,p) = i for all 0 € Sy, then p is the uniform
measure.

Proof. A similar argument from before tells us that

</ F($,y)frydﬂ>2 =) agd(o,p)

oESy
for some constants a,. So this is the same as if we had p = A, which gives us the value
1



On the other hand, using Cauchy-Schwarz,

(j/PKx,y)xydu>2 < (j/PYw,y)Qdu> (j/waQdu)

The first term can be expressed as ) . Ss al d(o, ) for some constants o/, so it equals the
same value as if u = A. In particular, we get

1
= 9/:E2y2 dyt.

The second term is the hard part, since it still requires us to sample 5 points from pu.
It will be helpful for us to understand | F(z,y)zry d\.We can rearrange this by writing
it as two integrals and swapping the order.

/F(xvy)xyd)‘:/ﬂ{$’§w,y’§y}xydu(x,’y,) d)\(ft,y)
:// ]]-{m/gx,y/gy}xydA(mvy) dﬂ(ﬁ/ayl)

= [S0- @50 - W) du

1

=4/d—w?—f+w@%m®w)

. Substituting this into the inequality we had before, we get
- d
81 9/my K
1
9 (4/F(x,y)xyd)\ - / 1—a2%— y2d,u>
1 1
9 <4/F(:C,y)xyd)\ - 3>

Using Cauchy-Schwarz again,

4 1
< = 2 202 d)\ —
_9¢/F@w)ﬁ¢/xydk o

4 1
- 9.3.-3 27
1
- 817

Therefore, all the inequalities are actually equalities, and we get F'(z,y) = ¢ - xy almost
everywhere for some constant c. So we get that u = A, as desired. O



1.3 Proving convergence of permutations from convergence of 4-point
permutation densities

To finish the proof of Theorem 1.1, we need to show that (m,) is convergent.

Proof. Suppose (mp)nen is such that |m,] — oo and lim, o d(o, 7m,) = 2—14. If (mp)nen is
not convergent, then there exist two subsequences (n;)ien, (n})ien and a permutation o
such that lim;_, d(o, mp,) # lim; o d(o, 7,/ ). Without loss of generality, we may assume
that (7, )ien are convergent (by compactnéss) with limits p, /. However, our theorem
says that both p, u/ are the uniform measure, which implies that d(o, u) = d(o, 1'). O

Example 1.1. Here is an example that shows that we cannot prove the same theorem
with S3 in place of S4. Define

M1

Then define py = aug + (1 — a)pe, interpolating between i1, po.

Then d( 1 2 3 ,p4) is a continuous function in «, so there exists some a which gives
usd( 1 2 3 ,u,) =1/6. By symmetry, d( 3 2 1 ,p,) = 1/6. On the other hand, by
symmetry, we have

A1 3 2., 0)=d(2 1 3,ua)=d(2 3 1,ua)=d(3 1 2, ua),



so these all must equal (1 —23) = 1.

Here are two theorems that a computer can prove using the flag algebra method we
will see later.

Theorem 1.4. If y is a permuton such that d( 1 2 3 ,u)=d(3 2 1 ,,u):%and
d(2 1 4 3,0)=d(3 4 1 2,p)=d(2 4 1 3,0)=d(3 1 4 2,/1):%,
then p s the uniform measure.
Theorem 1.5. If i is a permuton such that
d(1 2 3 4,u)+d(2 1 3 4,0)+d(2 1 4 3,u)+d(1 2 4 3 ,p)

1

+d(4 3 2 1, +d(4 3 1 2, )+d(3 4 1 2, +d(3 4 2 1) =z,

then w is uniform.
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